Materi Pertidaksamaan
Pertidaksamaan, Kalkulus
Sifat-Sifat Pertidaksamaan
1. tanda pertidaksamaan tidak berubah jika kedua ruas ditambah atau dikurangidengan bilangan yang sama
Jika a < b maka:
a + c < b + c
a – c < b – c
2. tanda pertidaksamaan tidak berubah jika kedua ruas dikali atau dibagi dengan bilangan positif yang sama
Jika a < b, dan c adalah bilangan positif, maka:
a.c < b.c
a/b < b/c
3. tanda pertidaksamaan akan berubah jika kedua ruas pertidaksamaan dikali atau dibagi dengan bilangan negatif yang sama
Jika a < b, dan c adalah bilangan negatif, maka:
a.c > b.c
a/c > b/c
4. tanda pertidaksamaan tidak berubah jika kedua ruas positif masing-masing dikuadratkan
Jika a < b; a dan b sama-sama positif, maka: a2 < b2
Pertidaksamaan Linear
→ Variabelnya berpangkat 1
Penyelesaian:
Suku-suku yang mengandung variabel dikumpulkan di ruas kiri, dan konstanta diletakkan di ruas kanan
Contoh:
Pertidaksamaan Kuadrat
→ Variabelnya berpangkat 2
Penyelesaian:
- Ruas kanan dibuat menjadi nol
- Faktorkan
- Tentukan harga nol, yaitu nilai variabel yang menyebabkan nilai faktor sama dengan nol
- Gambar garis bilangannya
Jika tanda pertidaksamaan ≥ atau ≤, maka harga nol ditandai dengan titik hitam •
Jika tanda pertidaksamaan > atau <, maka harga nol ditandai dengan titik putih °
- Tentukan tanda (+) atau (–) pada masing-masing interval di garis bilangan. Caranya adalah dengan memasukkan salah satu bilangan pada interval tersebut pada persamaan di ruas kiri.
Tanda pada garis bilangan berselang-seling, kecuali jika ada batas
rangkap (harga nol yang muncul 2 kali atau sebanyak bilangan genap untuk
pertidaksamaan tingkat tinggi), batas rangkap tidak merubah tanda
- Tentukan himpunan penyelesaian
→ jika tanda pertidaksamaan > 0 berarti daerah pada garis bilangan yang diarsir adalah yang bertanda (+)
→ jika tanda pertidaksamaan < 0 berarti daerah pada garis bilangan yang diarsir adalah yang bertanda (–)
Contoh:
(2x – 1)2 ≥ (5x – 3).(x – 1) – 7
4x2 – 4x + 1 ≥ 5x2 – 5x – 3x + 3 – 7
4x2 – 4x + 1 – 5x2 + 5x + 3x – 3 + 7 ≥ 0
–x2 + 4x + 5 ≥ 0
–(x2 – 4x – 5) ≥ 0
–(x – 5).(x + 1) ≥ 0
Harga nol: x – 5 = 0 atau x + 1 = 0
x = 5 atau x = –1
Garis bilangan:
- menggunakan titik hitam karena tanda pertidaksamaan ≥
- jika dimasukkan x = 0 hasilnya positif
- karena 0 berada di antara –1 dan 5, maka daerah tersebut bernilai positif, di kiri dan kanannya bernilai negatif
- karena tanda pertidaksamaan ≥ 0, maka yang diarsir adalah yang positif
Jadi penyelesaiannya: {x | –1 ≤ x ≤ 5}
Pertidaksamaan Tingkat Tinggi
→ Variabel berpangkat lebih dari 2
Penyelesaian sama dengan pertidaksamaan kuadrat
Contoh:
(2x + 1)2.(x2 – 5x + 6) < 0
(2x + 1)2.(x – 2).(x – 3) < 0
Harga nol: 2x + 1 = 0 atau x – 2 = 0 atau x – 3 = 0
x = –1/2 atau x = 2 atau x = 3
Garis bilangan:
- menggunakan titik putih karena tanda pertidaksamaan <
- jika dimasukkan x = 0 hasilnya positif
- karena 0 berada di antara –1/2 dan 2, maka daerah tersebut bernilai positif
- karena –1/2 adalah batas rangkap (–1/2 muncul sebanyak 2 kali
sebagai harga nol, jadi –1/2 merupakan batas rangkap), maka di sebelah
kiri –1/2 juga bernilai positif
- selain daerah yang dibatasi oleh batas rangkap, tanda positif dan negatif berselang-seling
- karena tanda pertidaksamaan ³ 0, maka yang diarsir adalah yang positif
Jadi penyelesaiannya: {x | 2 < x < 3}
Pertidaksamaan Pecahan
→ ada pembilang dan penyebut
Penyelesaian:
- Ruas kanan dijadikan nol
- Samakan penyebut di ruas kiri
- Faktorkan pembilang dan penyebut (jika bisa)
- Cari nilai-nilai variabel yang menyebabkan pembilang dan penyebutnya sama dengan nol (harga nol untuk pembilang dan penyebut)
- Gambar garis bilangan yang memuat semua nilai yang didapatkan pada langkah 4
Apapun tanda pertidaksamaannya, harga nol untuk penyebut selalu
digambar dengan titik putih (penyebut suatu pecahan tidak boleh sama
dengan 0 agar pecahan tersebut mempunyai nilai)
- Tentukan tanda (+) atau (–) pada masing-masing interval
Contoh 1:
Harga nol pembilang: –5x + 20 = 0
–5x = –20 → x = 4
Harga nol penyebut: x – 3 = 0 → x = 3
Garis bilangan:
→ x = 3 digambar menggunakan titik putih karena merupakan harga nol untuk penyebut
Jadi penyelesaiannya: {x | 3 < x ≤ 4}
Contoh 2:
Harga nol pembilang: x – 2 = 0 atau x + 1 = 0
x = 2 atau x = –1
Harga nol penyebut: tidak ada, karena penyebut tidak dapat difaktorkan dan jika dihitung nilai diskriminannya:
D = b2 – 4.a.c = 12 – 4.1.1 = 1 – 4 = –3
Nilai D-nya negatif, sehingga persamaan tersebut tidak mempunyai akar real
(Catatan: jika nilai D-nya tidak negatif, gunakan rumus abc untuk mendapat harga nol-nya)
Garis bilangan:
Komentar
Posting Komentar