Limit Trigonometri

Pengertian Limit Trigonimetri 

Limit trigonometri adalah nilai terdekat suatu sudut pada fungsi trigonometri. Perhitungan limit fungsi trigonometri bisa langsung disubtitusikan seperti limit fungsi aljabar tetapi ada fungsi trigonometri yang harus diubah terlebih dahulu ke identitas trigonometri untuk limit tak tentu yaitu limit yang apabila kita langsung subtitusikan nilai nya bernilai 0, atau bisa juga untuk limit tak tentu tidak harus memakai identitas tetapi memakai teorema limit trigonometri dan ada juga yang memakai identitas dan teorema. Jadi, apabila suatu fungsi limit trigonometri di subtitusikan nilai yang paling mendekati nya menghasilkan dan maka kita harus menyelesaikan dengan cara lain.

Dalam menentukan nilai limit suatu fungsi trigonometri terdapat berbagai cara yang bisa dipakai :
  • Metode Numerik
  • Subtitusi
  • Pemfaktoran
  • Kali Sekawan
  • Menggunakan Turunan
Penulisan nya dapat ditulis  sebagai berikut :
lim┬( x→c )⁡f( x )
Cara untuk membaca dari limit di atas yaitu limit fungsi f( x ) untuk x mendekati c

Berbagai Macam – Macam Trigonometri dan singkatan nya

A. Macam – macam trigonometri
Berikut ini adalah nama – nama trigonometri yang biasa kita gunakan :
  • Sinus ( sin )
  • Tangen ( tan )
  • Cosinus ( cos )
  • Cotongen ( cot )
  • Secan ( sec )
  • Cosecan ( Csc )
B. Rumus kebalikan dalam trigonimetri
  • sin⁡∝ = 1/csc⁡∝
  • cos⁡∝ = 1/sec⁡∝
  • tan⁡∝ = 1/cot⁡∝
  • tan⁡∝ = sin⁡∝/cos⁡∝
  • cot⁡∝=cos⁡∝/sin⁡∝
C. Identitas Trigonometri dalam trigonimetri
Sin2⁡∝ + cos2⁡∝ =1
1+cot2⁡∝=csc2⁡∝
Tan2⁡∝+1=sec2⁡∝

D. Rumus Jumlah dan Selisih dalam trigonimetri
 

Teorema Limit Trigonometri

Ada beberapa teorema yang dapat digunakan untuk menuntaskan persoalan limit trigonometri yaitu sebagai berikut ;

Teorema A

 

Teorema tersebut hanya berlaku pada saat (x -> 0) .

Teorema B

Terdapat beberapa teorema yang berlaku. Untuk setiap bilangan real ( asli ) “c” di dalam daerah asal fungsi yaitu :
 

Contoh Soal 1
SOAL  1

 




Jawab ;
Melihat bentuk limit pada soal di atas kita bisa langsung mensubtitusikan nilai x.


 

 

 

Komentar

Postingan populer dari blog ini

Materi Pertidaksamaan

Titik Kritis Turunan Fungsi

Turunan Kedua